Sök:

Investigation of yeast Grown in SSF Dring Biothanol Production from Lignocellusosic Material


Ethanol produced from lignocellulosic biomass has the potential to become a promisingalternative to gasoline. In this work the simultaneous saccharification and fermentation (SSF)technology was applied for ethanol production from hardwood with focus on cell growth,ethanol production and contamination.The SSF was performed at PH 5.5 and 35°C for different suspended solid concentrations(8%, 10% and 12%) of pretreated birch slurry which contained 16 % total suspended solids.Two different hexose fermenting yeast strain (Ethanol Red) and pentose fermenting yeaststrain were used.Quantifying the concentration of chemical components and metabolites in the fermentationmedium demonstrated that glucose and xylose are the major fermentable sugars in the slurry.The higher load of slurry (12%) represents a higher content of carbohydrates and potentiallyhigher end concentration of ethanol. Moreover, more lactic acid is produced with the lowerload of slurry (8 % or 10 %), presumably due to a result of a less inhibitory environment forbacterial growth. In this context, acetic acid sticks out as the most important inhibitor withconcentrations of 15.2 and 12.5 and 9.7 g/l respectively in the 12 %, 10 % and 8 % (ofsuspended solids) trials. Using pentose fermenting yeast may lead to higher ethanolproduction, lower xylose uptake and lower lactic acid formation. Cell viability and cellvitality determination from fermentation media in all the trails represented a sharplydecreasing trend during the fermentation for both Ethanol Red yeast strain and the pentosefermenting strain yeast strain apparently due to cell decomposition.

Författare

Ayda Barid Babapour Maryam Nadalipour Gavitar

Lärosäte och institution

Högskolan i Borås/Ingenjörshögskolan (IH)

Nivå:

"Magisteruppsats". Självständigt arbete (examensarbete ) om minst 15 högskolepoäng utfört för att erhålla magisterexamen.

Läs mer..