Sök:

Utveckling och tillämpning av en GIS-baserad hydrologisk modell


A distributed hydrological rainfall-runoff model has been developed using a GIS integrated with a dynamic programming module (PCRaster). The model has been developed within the framework of the EU-project TWINBAS at IVL Swedish Environmental Research Institute, and is intended for use in WATSHMAN ? a tool for watershed management developed at IVL. The model simulates runoff from a catchment based on daily mean values of temperature and precipitation. The GIS input data consist of maps with soil type, land-use, lakes, rivers and a digital elevation model. The model is a hybrid between a conceptual and a physical model. The snow routine uses the degree-day method, the evapotranspiration routine uses the Blainey-Criddle equation, the infiltration routine is based on Green-Ampt, groundwater is modelled assuming a linear reservoir and the flow routing is done with the kinematic wave equation combined with Manning?s equation.The GIS and the hydrologic model are embedded in one another, allowing calculation of each parameter in each grid cell. The output from the model consists of raster maps for each time step for a pre-defined parameter, or a time series for a parameter at a specified grid cell. The flow network is generated from the digital elevation model and determines the water flow on the grid scale. The smallest possible grid size is thus obtained from the resolution of the digital elevation model. In this implementation the grid size was 50 m x 50 m. The raster structure of the model allows for easy use of data from climate models or remotely sensed data.The model was evaluated using the River Kölstaån catchment, a part (110 km2) of the Lake Mälaren catchment, which has its outflow in central Stockholm, Sweden. The integration of the GIS and the hydrologic model worked well, giving significant advantages with respect to taking lakes and land-use into account. The evaluation data consisted of observed run-off for the period 1981 to 1991. The result from the calibration period shows a great variation in Reff (Nash & Sutcliffe) between the years, the three best years having Reff-values of 0.70 ? 0.80. The Reff-value for the entire calibration period was 0.55 and 0.48 for the validation period, where again there was great variation between different years. The volume error was 0.1 % for the calibration period and -21 % for the validation period. The evapotranspiration was overestimated during the validation period, which is probably a result of excess rain during the calibration period. The results are promising and the model has many advantages ? especially the integrated GIS-system ? compared to the present WATSHMAN model. It could be further developed by introducing a second groundwater storage and refining the evapotranspiration and infiltration routine. Given the promising results, the model should be evaluated in other larger and hillier areas and preferably against more distributed data.

Författare

Ida Westerberg

Lärosäte och institution

Uppsala universitet/Institutionen för geovetenskaper

Nivå:

"Uppsats för yrkesexamina på avancerad nivå". Självständigt arbete (examensarbete) om 30 högskolepoäng utfört för att erhålla yrkesexamen på avancerad nivå.

Läs mer..