Sök:

Utveckling av loadlimiter för bilbarnstol

The Smart Grid technology has during the last decade been established as a way to create a greater flexibility on the electricity grid that will be needed as the development moves towards an increased share of renewable primary energy sources in the electricity production. One part of the Smart Grid technology is the ability to shift loads in time, to adapt to either price or emissions, known as Demand Response. This project, which was conducted at KTH in collaboration with the consulting corporation Capgemini, examines the economic, environmental and social aspects of the Demand Response technology. In the project, three household products are used in a model that derives the potential savings in costs and emissions of CO2e. The results show that the actual savings measured in SEK are small, but that the savings measured in percent can be as high as 20 percent. Reduction of CO2e emissions is slightly lower. Furthermore, the study shows that the savings increase as more flexibility is given to the model and as the fluctuations of price increases. A scenario that includes more intermittent electricity production, and end users ready to commit to the technology,  is therefore vital for the success of the Demand Response technology. The results also show that an optimization cannot be done in such way that both minimize costs and CO2e emissions simultaneously. A discussion on the strategic opportunities for Capgemini shows that focus should be on collecting, interpreting and compiling the large amounts of data that the technology will result in. There are also possibilities in peripheral services tied together with the Smart Grid technology, such as the development of a charging infrastructure for electric cars.

Författare

Mattias Nilsson Marios Giouvanakis

Nivå:

"Kandidatuppsats". Självständigt arbete (examensarbete ) om minst 15 högskolepoäng utfört för att erhålla kandidatexamen.

Läs mer..